Lavender honey from the source

Several years ago I tasted some lavender honey and wrote, “The sample I tried was from Portugal. It was a beautiful medium amber color with almost no flavor other than sweet. It may have had a very slight citrus undertone. Overall, I was pretty disappointed in this famous variety.”

Recently, Dawn Tarin of San Diego read that passage and was mortified. She wrote to me:

I was very sad that you didn’t love the lavender honey that you tasted. I am currently in southern France (Provence) famous for its honey. I have bought some honey from 2015, and to me it tastes fabulous. . . . I would love to mail you a small sample (my gift, of course). It has to be my all-time favorite honey, and would be part of my last meal, if I ever get to make that choice!

Bee Brief bee

When you buy lavender honey, beware of confusing terminology.

The type of honey I have described in this post is honey made from the nectar of lavender flowers. The nectar is collected by the bees, taken back to the hive, and processed into honey.

Many times what is labeled “lavender honey” is really some other type of honey infused with lavender flowers. The flowers are often allowed to steep in the honey for some period of time and then may be filtered out or not.

The labels may say “infused,” “lavender flavored,” “essence of lavender,” or just “lavender honey.” Be suspicious if you see plant parts floating around in the jar.

The taste test

Just as promised, a sample arrived shortly thereafter. The honey was a gorgeous extra light amber and looked like sunshine in a bottle. And the taste? Amazing. I would say (and I’m not good at this) that it had a bright flavor, medium sweetness, and both woodsy and citrusy notes. Faintly in the background, I detected a flavor reminiscent of the scent of lavender, but just a hint, nothing heavy. If this is typical of lavender honey, I can certainly understand why it is a classic favorite.

The beekeeper who produced Dawn’s honey is based in Mougins, in the heart of Provence, an area famous for high-quality lavender honey. Below you can see his label and some notes and translations provided by Dawn, who spoke to him in French (I’m impressed).

Cultivars and terroir

Many variables can make one honey taste different from another. The nectar may have been collected from different species or different cultivars of lavender, which could certainly make a huge difference. More subtle is the difference in geography.

French wine makers refer to the terroir of a region, or how a region’s climate, soils, and geomorphology affect the taste of their grapes. Of late, the term has been used to describe the same phenomenon in coffee, chocolate, cheese, and honey. So even if the bees collected nectar from identical plants, the difference in local growing conditions would make the nectar taste unique.

Toss in the unpredictable

Beyond that, beekeepers have less control over their bees than winemakers have over their grapes. Even if honey is collected from a single crop in a single location, other nectars may get mixed in—maybe some weeds at the side of the road, flowers from a neighboring farm, or a taste of someone’s hummingbird feeder. The idea behind varietals is that the beekeeper believes that the honey was substantially produced from a particular crop at a particular time. Beyond that, we don’t really know.

With that in mind, a second taste—or more—is always a good idea, and Dawn has certainly changed my mind about lavender honey.

Lavender-honey-original-jar-2
Dawn sent me this annotated photo of the original jar she purchased in France. © Dawn Tarin.

Rusty
HoneyBeeSuite

Rebuttal: bees turn sugar into honey

I firmly believe that syrup made from refined sugar cannot be changed into honey, but not everyone agrees. Bees do indeed break down sugar (sucrose) into its component parts (fructose and glucose). But that enzymatic process does not make honey, just as adding invertase to sugar syrup does not make honey.

Although honey is mostly fructose and glucose, it is all the other stuff that gives honey its flavor, aroma, color and nutritional benefits. Honey bees thrive on honey in part because of the nutrients, antioxidants, amino acids, protein, flavonoids, minerals, and pollen that it contains. Yes, these are small in quantity, but they are vital, just as the vitamins and minerals in human food is vital to us.

At any rate, I thought I would let you read the rebuttal and decide for yourself. This comment arrived this week attached to a different post on the same subject, “What’s really in the bottle?” but it rebuts my most recent post “Is your honey cut with sugar syrup?” in the same way. I deleted references to other commenters for their privacy.

Rusty


If sugar and corn syrup and HFCS does not come from a plant, where, pray tell, does it come from???

Rusty, while you may be attributed with having the patience of Job, your love of bees is more in question.

We highly discourage ANY supplemental sweetener other than PURE CANE sugar (not “pure sugar,” nor corn syrup in any form, because of the pesticides used on those plants, as well as genetic modifications to the plants (sugar beets and corn) used to produce other products.

We (as well as many beekeepers the world over) feed our bees sweetened water throughout the year, particularly during the early spring and autumn months, for the VERY simple reason that the BEES (not the beekeepers) need this sweetened water to LIVE.

The bees are well able to convert this PLANT sweetened water into HONEY, regardless the pedantic arguments, and the hive utilizes this honey throughout the winter months, to survive and live.

Now, in regards to the “clear color” of honey, or non-nectar honey – this is a prime example of people over-thinking nature.

Clear honey (or bee-product), is simply honey that has not aged. Like fine wines, honey ages, due to the bacteria and enzymes in the bees’ pre-digestion. Honey that is in uncapped honeycomb cells has not sufficiently dehydrated enough to be capped and age.

Once capped, the “bee-product” darkens over time. Our sugar-syrup fed bee colonies produce HONEY from early spring, as soon as the worker bees can get out and find some sweet liquids to bring back to the hive. They then make honey until the cold temperatures force them to ball up and keep the queen warm over the winter, when the cycle continues. During this period, the bees consume the honey stores they have produced since early spring.

Honeycomb that we have harvested in fall (we have top bar, not Langstroth hives) shows all shades of color, from pale and almost water clear, to deep amber, almost brown. This is not due to the chemical make up of the honey, be it nectar or sugar produced. This is due to the aging of the bee product itself, and uncapped honey cells that contain a higher water content. Please stop over-thinking the color situation. Pure nectar honey would display the same thing.

If sugar water (from plants), did not make honey, the BEES would not be able to survive winter. The fact that humans harvest the food that these insects produce for their personal survival is secondary, regardless the monetized commercialization of the product.

I, along with [deleted], would love to see the chemical breakdown of the supposed “bee product,” in comparison with “nectar honey,” as I suspect little to no difference, beyond the aforementioned minerals and protein content.

I would also love to see the survival rate of bees on the planet increase, not for the consumption of honey or “other bee product,” but for the survival of humans and plants. Any efforts that contribute to bee populations should be encouraged, not discouraged over the semantics and sources of the sweetened liquid bees consume to produce HONEY.

While I cannot speak for any large, commercial operations attempting to sell and profit from “non-plant sweeetner-fed bee product” (and while there is “sugar-free honey,” this discussion is not about that), I can, as a private, small-scale, beekeeper, speak for the bees, in that sugar water (and ONLY pure cane sugar water) is FAR from being a money maker. Thirsty bees can drink gallons a day, and at a 1:1 ratio, a 50# bag of sugar only makes a little over 6 gallons of sugar water.

That sugar water then has to dehydrate and be capped by the bees, and then age to become honey. Time is money, you know.

And not all of the honey produced can be harvested. Sufficient stores of the sugar-water produced honey must be left for the hive to consume over the winter.

Harvested honey then has to be processed, whether by centrifuge, as is the case for Langstroth hives, or by crushing the comb, for top bar hives. Labor is money. So, the snarky worry about profiteering from sugar-water fed bees is utterly needless.

Bottom line, folks, if you are beekeeping in any form, it should, first and foremost be for the bees. Wasting your energies over stupid semantics, instead of focusing on the bees is not helping the cause.

Evil profiteers will always be evil. But looking for evil in every little thing, and pedantically castigating sugar water feeding as not being honey, or somehow contributing to the evil men do in the name of money is truly missing the forest for a chipped piece of bark on a very small tree.

Love bees.
~Moz

Is your honey cut with sugar syrup?

Adulteration of honey with sugar syrup and corn syrup has been a problem for a long time. An unscrupulous beekeeper can feed his colonies these products and extract them like honey, or he can add them later, after extraction. The financial incentive is obvious because syrup is cheap and readily available.

Naturally, importers of honey and large-scale purchasers of honey for manufacturing purposes have always been interested in knowing if the liquid they are paying for is pure, or if it has been “cut” with syrups from non-floral sources.

Cane and corn are C4 plants

It turns out that most plants can be identified as either C3 or C4 plants. Roughly 90% of all plants are C3 and about 5% are C4. The names C3 and C4 come from the first compound produced by the plants during the CO2 fixation stage of photosynthesis.

In a C3 plant, the first compound produced has three carbons, and in a C4 plant, the first compound produced has four carbons. A third type of photosynthesis called CAM is found in about 5% of plants, mostly succulents. Since many of these can switch between CAM and C3, they are sometimes included with the C3 species.

The C4 cycle is an adaptation of plants that evolved in very hot and dry climates. They are able to use CO2 more efficiently and they lose much less water due to transpiration, so they can thrive in sere conditions. Most C4 plants are grasses, including sugar cane, maize, and sorghum, and most are wind-pollinated.

Honey is made from the nectar of flowers

By definition, honey is made from the nectar of flowers. Nectar is secreted by nectaries, which are glands located in flowers, and the secretions are especially designed to attract pollinating insects. Some definitions also include secretions from extra-floral nectaries and the excretions of plant-sucking insects (honeydew) as honey sources.

However, the C4 plants maize (corn) and sugar cane do not have nectaries and are not known for producing honeydew. Sweet liquids pressed from the leaves, stems, or other herbaceous parts of a plant are not considered nectar for the purposes of honey, especially after they are refined by industry.

Isotope profiles can identify C4 syrup

C3 and C4 plants contain different ratios of the stable isotopes carbon-12 and carbon-13. Isotopes are different forms of an element. Each isotope of an element has the same number of protons but differing numbers of neutrons in the nucleus. Since extra neutrons affect the weight, they are easily detected

A carbon-12 atom has 6 neutrons and a carbon-13 atom has 7 neutrons, but they both act like carbon. These isotopes do not decay and are not radioactive, hence they are “stable” as opposed to the unstable type that decay and are radioactive. A carbon isotope we have all heard of is carbon-14, which is a radioactive isotope with a very long half-life of 5730 years. By measuring how much of this isotope remains in a very old object, we can determine its age.

In any case, since these heavy carbon atoms are measurable, it is easy to discover if a sample of honey is adulterated with syrups derived from sugar cane or corn by measuring the ratio of the stable isotopes, 13C/12C.

Sugar beets are C3 plants

However, a problem occurs when syrup is derived from beet sugar. Beets are C3 plants and have the normal ratio of stable isotopes found in most nectar-producing plants. So honey contaminated with sugar beet syrup is not detectable with this method.

As you can see, contamination with syrup is an unresolved problem. Isotope analysis is not readily available to the average consumer, and beet sugar adulteration cannot be found in any case. If you are concerned about the content of your honey, it is best to know your beekeeper. . .and know him well.

Rusty
HoneyBeeSuite

How to make a steam melter

When it comes to rendering beeswax from old combs, one common concern is the amount of wax that remains in the slumgum. Whereas it is fairly easy to melt new comb or cappings, old combs can be difficult and frustrating due to cocoons and other debris in the wax.

Aram Frangulyan, a beekeeper in Auburn, Washington devised a simple rendering system that separates most of the wax even from the darkest combs. He uses steam in an enclosed box and lets the wax drip out the bottom into a pan of water. Aram writes, “It does not matter how old your frames are. Steam chases wax out of frames completely caked with propolis or frames that are so old you would never get anything out of them with any other method.”

Here are some instructions for a building a wax melter using a wallpaper steamer:

1. Build a steamer box. Aram used a deep brood box and made a top and bottom out of scraps of plywood. Attach the bottom piece of plywood securely to the bottom of the deep box.

2. Drill a hole near the center front of the plywood. This is where the melted wax will drain out.

3. Line the box with aluminum foil, completely covering the bottom and then up the interior sides of the box. Punch a hole through the foil at the drain hole.

4. Drill another hole in the top plywood, large enough for the steamer hose to fit snugly.

5. Arrange the steamer box so that it tips forward and the drain hole is over a catch bucket filled with water. The water prevents the wax from adhering to the inside of the bucket.

Once the melter is complete you can begin filling the box with frames. If your frames are wooden with wax foundation, you can put them in the melter as is.

If you have plastic frames or plastic foundation, the steamer will melt the plastic. So for these frames, you can scrape the frames free of wax and place the scrapings in the box.

When you are ready to begin, just turn on the steamer. Aram says it takes about 40 minutes for the wax to begin dropping out the bottom.

Aram's-steam-melter-1
Aram used a feeder board underneath, but he suggests using a plain piece of plywood with a hole cut for the wax to drain. © Aram Frangulyan.
Aram's-steam-melter-3
The wax can be scraped directly from the plastic foundation into the melter box. © Aram Frangulyan.
Aram's-steam-melter-2
Here the box is filled partly with frames containing wax combs and partly with wax scraped from plastic foundation. © Aram Frangulyan.
Aram's-steam-melter-4
A pile of scraped frames. © Aram Frangulyan.
Aram's-steam-melter-7
The wax drips into a bucket of water. The water prevents the wax from sticking to the bucket. © Aram Frangulyan.
Aram's-steam-melter-8
This rendered wax is ready for a secondary process. It needs to be remelted and filtered to remove the fine particles. © Aram Frangulyan.
Aram's-steam-melter-5
After the melting process, all that remains is slumgum. © Aram Frangulyan.
Aram's-steam-melter-6
Aram pulled aside the slumgum with his hive tool and, as you can see, no layer of beeswax remains. The wax has all been steamed out. © Aram Frangulyan.

I have not tried this method because I don’t have a steamer, but I’m seriously considering it. I have buckets and buckets full of wax waiting for me to do something.

Rusty
HoneyBeeSuite

Pearlescent honey

Robert Lunsford from down in Louisiana wanted to know what was up with his honey, so he sent the following three photos of shimmery, iridescent honey that seems to glow from within. Awesome looking stuff!

My theory is simply this: I think he had at least two different types of honey in the pot. One of the types was much higher in glucose than the other, so it began to granulate much more quickly.

It looks to me like they were not thoroughly combined, but just stirred a little bit—the way you would make a marble cake or strawberry swirl ice cream. The result was ripples of granulated honey suspended in liquid honey. Because honey becomes lighter in color when it granulates, the nearly white but opaque crystals could easily be seen through the darker, but still translucent liquid honey.

I figured that it would all soon granulate, especially since it was now seeded with crystals. Sure enough, by the time I requested permission to use the photos, Robert reported that it had all granulated into a fine-grained, silky smooth, and creamy consistency.

Has anyone else seen this? I thought the photos were great.

Thanks, Robert!

Rusty
HoneyBeeSuite

Robert-Lunsford-1
Iridescent honey. © Robert Lunsford.
Robert-Lunsford-3
You can see the swirls where it was stirred. © Robert Lunsford.
Robert-Lunsford-2
It seems like magic. © Robert Lunsford.